MCQ Questions for Class 11 Maths Chapter 7 Permutations and Combinations with Answers

Students are advised to solve the Permutations and Combinations Multiple Choice Questions of Class 11 Maths to know different concepts. Practicing the MCQ Questions on Permutations and Combinations Class 11 with answers will boost your confidence thereby helping you score well in the exam.

Explore numerous MCQ Questions of Permutations and Combinations Class 11 with answers provided with detailed solutions by looking below.

Question 1.
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. The number of ways such arrangements are possible are
(a) 8820
(b) 2880
(c) 2088
(d) 2808

Answer

Answer: (b) 2880
Total number of persons are 9 in which there are 5 men and 4 women
So total number of place = 9
Now women seat in even place
So total number of arrangement = 4! (_W_W_W_W_) (W-Woman)
Men sit in odd place
So total number of arrangement = 5! (MWMWMWMWM) (M-Man)
Now Total number of arrangement = 5! × 4! = 120 × 24 = 2880


Question 2.
Six boys and six girls sit along a line alternately in x ways and along a circle (again alternatively in y ways), then
(a) x = y
(b) y = 12x
(c) x = 10y
(d) x = 12y

Answer

Answer: (d) x = 12y
Given, six boys and six girls sit along a line alternately in x ways and along a circle
(again alternatively in y ways).
Now, x = 6! × 6! + 6! × 6!
⇒ x = 2 × (6!)2
and y = 5! × 6!
Now, x/y = {2 × (6!)2}/(5! × 6!)
⇒ x/y = {2 × 6! × 6! }/(5! × 6!)
⇒ x/y = {2 × 6!}/5!
⇒ x/y = {2 × 6 × 5!}/5!
⇒ x/y = 12
⇒ x = 12y


Question 3.
How many 3-letter words with or without meaning, can be formed out of the letters of the word, LOGARITHMS, if repetition of letters is not allowed
(a) 720
(b) 420
(c) none of these
(d) 5040

Answer

Answer: (a) 720
The word LOGARITHMS has 10 different letters.
Hence, the number of 3-letter words(with or without meaning) formed by using these letters
= 10P3
= 10 × 9 × 8
= 720


Question 4.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of at least 3 girls
(a) 588
(b) 885
(c) 858
(d) None of these

Answer

Answer: (a) 588
Given number of boys = 9
Number of girls = 4
Now, A committee of 7 has to be formed from 9 boys and 4 girls.
Now, the committee consists of atleast 3 girls:
4C3 × 9C4 + 4C4 × 9C3
= [{4! / (3! × 1!)} × {9! / (4! × 5!)}] + 9C3
= [{(4 × 3!) /3!} × {(9 × 8 × 7 × 6 × 5!) / (4! × 5!)}] + 9! /(3! × 6!)
= [4 × {(9 × 8 × 7 × 6) / 4!}] + (9×8×7×6!)/(3! × 6!)
= [{4 × (9 × 8 × 7 × 6)} / (4 × 3 × 2 × 1)] + (9 × 8 × 7)/3!
= (9 × 8 × 7) + (9 × 8 × 7)/(3 × 2 × 1)
= 504 + (504/6)
= 504 + 84
= 588


Question 5.
In how many ways can 12 people be divided into 3 groups where 4 persons must be there in each group?
(a) none of these
(b) 12!/(4!)³
(c) Insufficient data
(d) 12!/{3! × (4!)³}

Answer

Answer: (d) 12!/{3! × (4!)³}
Number of ways in which
m × n”>
m × n distinct things can be divided equally into n
n”> groups
= (mn)!/{n! × (m!)n }
Given, 12(3 × 4) people needs to be divided into 3 groups where 4 persons must be there in each group.
So, the required number of ways = (12)!/{3! × (4!)n}


Question 6.
How many factors are 25 × 36 × 5² are perfect squares
(a) 24
(b) 12
(c) 16
(d) 22

Answer

Answer: (a) 24
Any factors of 25 × 36 × 5² which is a perfect square will be of the form 2a × 3b × 5c
where a can be 0 or 2 or 4, So there are 3 ways
b can be 0 or 2 or 4 or 6, So there are 4 ways
a can be 0 or 2, So there are 2 ways
So, the required number of factors = 3 × 4 × 2 = 24


Question 7.
If ⁿC15 = ⁿC6 then the value of ⁿC21 is
(a) 0
(b) 1
(c) 21
(d) None of these

Answer

Answer: (b) 1
We know that
if ⁿCr1 = ⁿCr2
⇒ n = r1 + r2
Given, ⁿC15 = ⁿC6
⇒ n = 15 + 6
⇒ n = 21
Now, 21C21 = 1


Question 8.
If n+1C3 = 2 ⁿC2, then the value of n is
(a) 3
(b) 4
(c) 5
(d) 6

Answer

Answer: (d) 6
Given, n+1C3 = 2 ⁿC2
⇒ [(n + 1)!/{(n + 1 – 3) × 3!}] = 2n!/{(n – 2) × 2!}
⇒ [{n × n!}/{(n – 2) × 3!}] = 2n!/{(n – 2) × 2}
⇒ n/3! = 1
⇒ n/6 = 1
⇒ n = 6


Question 9.
There are 15 points in a plane, no two of which are in a straight line except 4, all of which are in a straight line. The number of triangle that can be formed by using these 15 points is
(a) 15C3
(b) 490
(c) 451
(d) 415

Answer

Answer: (c) 451
The required number of triangle = 15C34C3 = 455 – 4 = 451


Question 10.
In how many ways in which 8 students can be sated in a circle is
(a) 40302
(b) 40320
(c) 5040
(d) 50040

Answer

Answer: (c) 5040
The number of ways in which 8 students can be sated in a circle = ( 8 – 1)!
= 7!
= 5040


Question 11.
Let R = {a, b, c, d} and S = {1, 2, 3}, then the number of functions f, from R to S, which are onto is
(a) 80
(b) 16
(c) 24
(d) 36

Answer

Answer: (d) 36
Total number of functions = 34 = 81
All the four elements can be mapped to exactly one element in 3 ways, and exactly 3
elements in 3(24 – 2) = 3(16 – 2) = 3 × 14 = 42
Thus the number of onto functions = 81 – 42 -3 = 81 – 45 = 36


Question 12.
If (1 + x)ⁿ = C0 + C1 x + C2 x² + …………..+ Cn xⁿ, then the value of C0² + C1² + C2² + …………..+ Cnⁿ = ²ⁿCn is
(a) (2n)!/(n!)
(b) (2n)!/(n! × n!)
(c) (2n)!/(n! × n!)2
(d) None of these

Answer

Answer: (b) (2n)!/(n! × n!)
Given, (1 + x)ⁿ = C0 + C1 x + C2 x² + ………….. + Cn xⁿ ………. 1
and (1 + x)ⁿ = C0 xⁿ + C1 xn-1 + C2 xn-2 + ………….. Cr xn-r + ………. + Cn-1 x + Cn ……….. 2
Multiply 1 and 2, we get
(1 + x)²ⁿ = (C0 + C1 x + C2 x² + …………..+ Cn xⁿ) × (C0 xⁿ + C1 xn-1 + C2 xn-2 + ………….. Cr xn-r + ………. + Cn-1 x + Cn)
Now, equating the coefficient of xn on both side, we get
C0² + C1² + C2² + …………..+ Cnⁿ = ²ⁿCn = (2n)!/(n! × n!)


Question 13.
The total number of 9 digit numbers of different digits is
(a) 99!
(b) 9!
(c) 8 × 9!
(d) 9 × 9!

Answer

Answer: (d) 9 × 9!
Given digit in the number = 9
1st place can be filled = 9 ways = 9 (from 1-9 any number can be placed at first position)
2nd place can be filled = 9 ways (from 0-9 any number can be placed except the number which is placed at the first position)
3rd place can be filled = 8 ways
4th place can be filled = 7 ways
5th place can be filled = 6 ways
6th place can be filled = 5 ways
7th place can be filled = 4 ways
8th place can be filled = 3 ways
9th place can be filled = 2 ways
So total number of ways = 9 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2
= 9 × 9!


Question 14.
The number of ways in which 6 men add 5 women can dine at a round table, if no two women are to sit together, is given by
(a) 30
(b) 5 ! × 5 !
(c) 5 ! × 4 !
(d) 7 ! × 5 !

Answer

Answer: (b) 5 ! × 5 !
Again, 6 girls can be arranged among themselves in 5! ways in a circle.
So, the number of arrangements where boys and girls sit attentively in a circle = 5! × 5!


Question 15.
There are 15 points in a plane, no two of which are in a straight line except 4, all of which are in a straight line. The number of triangle that can be formed by using these 15 points is
(a) 15C3
(b) 490
(c) 451
(d) 415

Answer

Answer: (c) 451
The required number of triangle = 15C34C3 = 455 – 4 = 451


Question 16.
The number of 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated are
(a) 110
(b) 120
(c) 130
(d) 140

Answer

Answer: (b) 120
A number is divisible by 10 if the unit digit of the number is 0.
Given digits are 0, 1, 3, 5, 7, 9
Now we fix digit 0 at unit place of the number.
Remaining 5 digits can be arranged in 5! ways
So, total 6-digit numbers which are divisible by 10 = 5! = 120


Question 17.
6 men and 4 women are to be seated in a row so that no two women sit together. The number of ways they can be seated is
(a) 604800
(b) 17280
(c) 120960
(d) 518400

Answer

Answer: (a) 604800
6 men can be sit as
× M × M × M × M × M × M ×
Now, there are 7 spaces and 4 women can be sit as 7P4 = 7P3 = 7!/3! = (7 × 6 × 5 × 4 × 3!)/3!
= 7 × 6 × 5 × 4 = 840
Now, total number of arrangement = 6! × 840
= 720 × 840
= 604800


Question 18.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of exactly 3 girls
(a) 540
(b) 405
(c) 504
(d) None of these

Answer

Answer: (c) 504
Given number of boys = 9
Number of girls = 4
Now, A committee of 7 has to be formed from 9 boys and 4 girls.
Now, If in committee consist of exactly 3 girls:
4C3 × 9C4
= {4! / (3! × 1!)} × {9! / (4! × 5!)}
= {(4×3!) /3!} × {(9 × 8 × 7 × 6 × 5!) / (4! × 5!)}
= 4 × {(9 × 8 × 7 × 6) / 4!}
= {4 × (9 × 8 × 7 × 6)} / (4 × 3 × 2 × 1)
= 9 × 8 × 7
= 504


Question 19.
How many factors are 25 × 36 × 5² are perfect squares
(a) 24
(b) 12
(c) 16
(d) 22

Answer

Answer: (a) 24
Any factors of 25 × 36 × 5² which is a perfect square will be of the form 2a × 3b × 5c
where a can be 0 or 2 or 4, So there are 3 ways
b can be 0 or 2 or 4 or 6, So there are 4 ways
a can be 0 or 2, So there are 2 ways
So, the required number of factors = 3 × 4 × 2 = 24


Question 20.
The value of 2 × P(n, n-2) is
(a) n
(b) 2n
(c) n!
(d) 2n!

Answer

Answer: (c) n!
Given, 2 × P(n, n – 2)
= 2 × {n!/(n – (n – 2))}
= 2 × {n!/(n – n + 2)}
= 2 × (n!/2)
= n!
So, 2 × P(n, n – 2) = n!


 


0 Comments

Leave a Reply

Avatar placeholder

Your email address will not be published. Required fields are marked *