MCQ Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry with Answers
Students are advised to solve the Introduction to Trigonometry Multiple Choice Questions of Class 10 Maths to know different concepts. Practicing the MCQ Questions on Introduction to Trigonometry Class 10 with answers will boost your confidence thereby helping you score well in the exam.
Explore numerous MCQ Questions of Introduction to Trigonometry Class 10 with answers provided with detailed solutions by looking below.
Question 1.
If cos (α + β) = 0, then sin (α – β) can be reduced to
(a) cos β
(b) cos 2β
(c) sin α
(d) sin 2α
Answer
Answer: (b) cos 2β
Question 2.
If cos (40° + A) = sin 30°, the value of A is:?
(a) 60°
(b) 20°
(c) 40°
(d) 30°
Answer
Answer: (b) 20°
Question 3.
If sin x + cosec x = 2, then sin19x + cosec20x =
(a) 219
(b) 220
(c) 2
(d) 239
Answer
Answer: (c) 2
Question 4.
If cos 9a = sin a and 9a < 90°, then the value of tan 5a is
(a) \(\frac { 1 }{ \sqrt { 3 } }\)
(b) √3
(c) 1
(d) 0
Answer
Answer: (c) 1
Question 5.
7 sin2θ + 3 cos2θ = 4 then :
(a) tan θ = \(\frac { 1 }{ \sqrt { 2 } }\)
(b) tan θ = \(\frac { 1 }{ 2 }\)
(c) tan θ = \(\frac { 1 }{ 3 }\)
(d) tan θ = \(\frac { 1 }{ \sqrt { 3 } }\)
Answer
Answer: (d) tan θ = \(\frac { 1 }{ \sqrt { 3 } }\)
Question 6.
(1 + tanθ + secθ) (1 + cotθ – cosecθ) is equal to
(a) 0
(b) 1
(c) 2
(d) -1
Answer
Answer: (c) 2
Question 7.
Ratios of sides of a right triangle with respect to its acute angles are known as
(a) trigonometric identities
(b) trigonometry
(c) trigonometric ratios of the angles
(d) none of these
Answer
Answer: (c) trigonometric ratios of the angles
Question 8.
If tan θ = \(\frac { 12 }{ 5 }\), then \(\frac { 1+sinθ }{ 1-sinθ }\) is equal to
(a) 24
(b) \(\frac { 12 }{ 13 }\)
(c) 25
(d) 9
Answer
Answer: (c) 25
Question 9.
The value of cos θ cos(90° – θ) – sin θ sin (90° – θ) is:
(a) 1
(b) 0
(c) -1
(d) 2
Answer
Answer: (b) 0
Question 10.
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
(a) ab
(b) b2 + a2
(c) a2b2
(d) a4b4
Answer
Answer: (c) a2b2
Question 11.
If ΔABC is right angled at C, then the value of cos (A + B) is
(a) 0
(b) 1
(c) \(\frac { 1 }{ 2 }\)
(d) \(\frac { \sqrt { 3 } }{ 2 }\)
Answer
Answer: (a) 0
Question 12.
If x and y are complementary angles, then
(a) sin x = sin y
(b) tan x = tan y
(c) cos x = cos y
(d) sec x = cosec y
Answer
Answer: (d) sec x = cosec y
Question 13.
sin (45° + θ) – cos (45° – θ) is equal to
(a) 2 cos θ
(b) 0
(c) 2 sin θ
(d) 1
Answer
Answer: (b) 0
Question 14.
If 0° < θ < 90°, then sec 0 is (a) >1
(b) < 1
(c) =1
(d) 0
Answer
Answer: (a) >1
Question 15.
In right triangle ABC, right angled at C, if tan A = 1, then the value of 2 sin A cos A is
(a) 0
(b) 1
(c) – 1
(d) 2
Answer
Answer: (b) 1
Question 16.
Given that sin A=\(\frac { 1 }{ 2 }\) and cos B=\(\frac { 1 }{ \sqrt { 2 } }\) then the value of (A + B) is:
(a) 30°
(b) 45°
(c) 75°
(d) 15°
Answer
Answer: (c) 75°
Question 17.
If sin A = \(\frac { 1 }{ 2 }\), then the value of cot A is
(a) √3
(b) \(\frac { 1 }{ \sqrt { 3 } }\)
(c) \(\frac { \sqrt { 3 } }{ 2 }\)
(d) 1
Answer
Answer: (a) √3
Question 18.
If √3tanθ = 3sinθ, then the value of sin2θ−cos2θ is
(a) 0
(b) 1
(c) \(\frac { 1 }{ 2 }\)
(d) \(\frac { 1 }{ 3 }\)
Answer
Answer: (d) \(\frac { 1 }{ 3 }\)
Question 19.
Out of the following options, the two angles that are together classified as complementary angles are
(a) 120° and 60°
(b) 50° and 30°
(c) 65° and 25°
(d) 70° and 30°
Answer
Answer: (c) 65° and 25°
Question 20.
If sin θ − cos θ = 0, vthen the value of θ is
(a) 90°
(b) 30°
(c) 45°
(d) 60°
Answer
Answer: (c) 45°
Question 21.
If tan 2A = cot (A – 18°), then the value of A is
(a) 24°
(b) 18°
(c) 27°
(d) 36°
Answer
Answer: (d) 36°
Question 22.
If cos A + cos2 A = 1, then sin2 A + sin4 A is
(a) -1
(b) 0
(c) 1
(d) 2
Answer
Answer: (c) 1
Question 23.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = ____
(a) -1
(b) 0
(c) 1
(d) 2
Answer
Answer: (c) 1
Question 24.
sin 2B = 2 sin B is true when B is equal to
(a) 90°
(b) 60°
(c) 30°
(d) 0°
Answer
Answer: (d) 0°
0 Comments